.. _polys-reference: =========== Polynomials =========== .. automodule:: diofant.polys Computations with polynomials are at the core of computer algebra and having a fast and robust polynomials manipulation module is a key for building a powerful symbolic manipulation system. Here we document a dedicated module for computing in polynomial algebras over various coefficient domains. There is a vast number of methods implemented, ranging from simple tools like polynomial division, to advanced concepts including Gröbner bases and multivariate factorization over algebraic number domains. Basic polynomial manipulation functions ======================================= .. automodule:: diofant.polys.polytools :members: Extra polynomial manipulation functions ======================================= .. automodule:: diofant.polys.polyfuncs :members: Domain constructors =================== .. automodule:: diofant.polys.constructor :members: Algebraic number fields ======================= .. automodule:: diofant.polys.numberfields :members: Monomials encoded as tuples =========================== .. automodule:: diofant.polys.monomials :members: Orderings of monomials ====================== .. automodule:: diofant.polys.orderings :members: Formal manipulation of roots of polynomials =========================================== .. automodule:: diofant.polys.rootoftools :members: Symbolic root-finding algorithms ================================ .. automodule:: diofant.polys.polyroots :members: Special polynomials =================== .. automodule:: diofant.polys.specialpolys :members: Orthogonal polynomials ====================== .. automodule:: diofant.polys.orthopolys :members: Manipulation of rational functions ================================== .. automodule:: diofant.polys.rationaltools :members: Partial fraction decomposition ============================== .. automodule:: diofant.polys.partfrac :members: