Logo
  • Installation
  • Tutorial
  • Command-Line Usage
  • Reference
  • Internals
    • Internals of the Polynomial Manipulation Module
    • The Gruntz Algorithm
    • Details on the Hypergeometric Function Expansion
    • Computing Integrals using Meijer G-Functions
    • Numerical evaluation
  • Development
  • About
  • Release Notes
  • Bibliography
Diofant
  • Internals
  • View page source

Internals

This section covers the developers-only documentation, i.e part of the API that may be changed anytime by anyone.

  • Internals of the Polynomial Manipulation Module
    • Manipulation of sparse, distributed polynomials
    • Polynomial factorization algorithms
    • Gröbner basis algorithms
    • Algebraic number fields
    • Factorization over algebraic number fields
    • Modular GCD
    • Heuristic GCD
    • Further tools
    • Undocumented
  • The Gruntz Algorithm
  • Details on the Hypergeometric Function Expansion
    • Hypergeometric Function Expansion Algorithm
    • Meijer G-Functions of Finite Confluence
    • Extending The Hypergeometric Tables
    • Implemented Hypergeometric Formulae
  • Computing Integrals using Meijer G-Functions
    • Overview
    • Polar Numbers and Branched Functions
    • Representing Branched Functions on the Argand Plane
    • Table Lookups and Inverse Mellin Transforms
    • Applying the Integral Theorems
    • The G-Function Integration Theorems
    • The Inverse Laplace Transform of a G-function
    • Implemented G-Function Formulae
  • Numerical evaluation
    • Floating-point numbers
    • Accuracy and error handling
    • Sums and integrals
    • Numerical simplification
    • uFuncify
Previous Next

© Copyright 2006-2022 SymPy Development Team, 2013-2025 Sergey B Kirpichev.